

Curso de Pós-Graduação em Economia- CAEN Da Universidade Federal do Ceará

Exame de Qualificação em Microeconomia Outubro de 2017

Leia com a atenção as instruções abaixo:

- 1) A prova compõe-se de quatro questões com iguais pesos.
- 2) Duração Máxima da Prova: 4 horas IMPRORROGÁVEIS.
- 3) É proibida a consulta de qualquer material durante o exame.
- 4) Responda as questões nas folhas próprias entregues pela secretaria.
- 5) Não escreva em hipótese alguma seu nome na prova, apenas o seu número.
- 6) Ao entregar o exame não esqueça de assinar a folha de presença.

Número do Candidato:	
Composição da Banca examinadora	
Maurício Benegas (Presidente) Paulo de Melo Jorge Neto	

Boa Sorte!

- 1. Com relação às teorias do consumidor e da firma, resolva as questões abaixo:
 - (a) Derive a utilidade **direta** a partir da função dispêndio $e(p,u)=up_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3}$.
 - (b) Suponha que uma função escolha $x(p,y) \in \mathbb{R}^n_+$ é homogênea de grau zero em (p,y). Mostre que WARP é satisfeita para quaisquer (p,y) se e somente se é satisfeita no conjunto $\{(p,1); p \in \mathbb{R}^n_{++}\}$.
 - (c) Suponha que F(x) é uma função de produção homotética tal que F(x) = f(g(x)) onde f é alguma função estrimente crescente e g é uma função homogênea de grau 1. Tome x^0 um ponto na isoquanta unitária, $F(x^0) = 1$, e x^1 um ponto no raio passando por x^0 tal que $y = F(x^1)$. Mostre que $x^1 = t^*x^0$ onde $t^* = f^{-1}(y)/f^{-1}(1)$.
 - (d) Encontre a função de produção associada à função custo $c(w_1, w_2, y) = yAw_1^{\alpha}w_2^{1-\alpha}$.
 - (e) Considere um agente que possuí uma riqueza inicial w=6 e utilidade Bernoulli dada por $u(x)=\sqrt{x}$. Considere a aposta (19,10;p,1-p). Inicialmente suponha que o agente é proprietário dessa loteria. Qual seria o preço mínimo pelo qual este agente estaria disposto a vender sua loteria? Por outro lado, se o agente não for proprietário da loteria, qual seria o preço máximo que o agente estaria disposto a pagar pela mesma?

- 1. Com relação ao Core de uma economia de trocas competitiva, enuncie e demonstre:
 - (a) O Teorema de Tratamento Igual;
 - (b) A Conjectura de Edgeworth (ou Teorema do Core Limite).

- Considere um mercado composto por duas firmas e cuja curva de demanda inversa é formada por $P{=}1{-}(q_1{+}\;q_2)$. Assuma que cada firma possui uma função de custo definida por $C(q_i)$ = cq_i e a competição nesse mercado é a do tipo de Cournot. Quando esse jogo é repetido infinitas vezes, pode-se sugerir a seguinte estratégia de gatilho: ambas as firma iniciam produzindo q^* no primeiro período; no t-ésimo período produz q^* se ambas as firmas tiverem produzido q^* em cada um dos t-1 períodos; de outro modo produz a quantidade de Cournot q_c . Mostre que valor q^* pode assumir para que esta estratégia de gatilho seja um Equilíbrio de Nash Perfeito em Subjogo implementando cooperação.

4 - Considere o caso de um principal que delega tarefa para um agente. Tal agente deve exercer um esforço alto, e_H , ou baixo, e_L , de modo que a probabilidade de se obter um certo nível de lucro π é sempre maior quando o esforço for alto, ou seja, sendo $f(\pi/e)$ a função densidade de π dado o esforço e, tem-se sempre que $f(\pi/e)$ $f(\pi/e)$. Considere que o agente é neutro ao risco e que recebe um salário w para executar sua tarefa, possuindo uma função de utilidade separável em w e no nível de esforço e igual a $f(\pi/e)$ $f(\pi$