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1 Introduction

Duality in the production theory was first investigated in the work of Shep-

hard (1953, 1970, 1973) — the precursor of the axiomatic approach to produc-

tion theory1. His findings, later improved by McFadden (1978), Blackorby

& Donaldson (1980) and Färe & Primont (1995), enabled important appli-

cations in production theory, which are still the reference guide for many

graduate textbooks. With respect to duality, much credit must be devoted

to the possibility of obtaining supply and input demand functions through

simple derivation of related functions (such as the profit function), without

the need to undertake an optimization process.

The vast majority of proofs and demonstrations certifying the existence

of duality in production rely on the envelope theorem. This subterfuge,

however, requires extensive knowledge about the optimization process of the

firm, which contrasts with the simple proposal of duality.

Furthermore, it should be pointed out that the use of the envelope theo-

rem implicitly requires that the choice of output and input vectors be tech-

nical and allocatively efficient, that is, that such choices be on border of

production.

In this paper, however, new relations of duality shall be explored, be-

tween the profit function and the directional distance function more recently-

discovered by Chambers, Chung & Färe (1996, 1998). The main objective

is to make use of this duality to supply an alternative demonstration of the

lemma of Hotelling and Shephard, without using the envelope theorem. In

1Diewert (1974) offers and excellent overview of the application of the duality theory
in production theory.
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fact, as shall be seen throughout this paper, the proposed proof is relatively

simple as well as enabling the supply and demand systems generated to be

technically inefficient. That is, the vectors of outputs and inputs may be

points inside the production set2. Further to the above results, it is also

shown that Shephard’s duality theorem may be seen as a particular case of

duality between the profit function and that of directional distance.

In the paper that follows, in addition to the introduction, the layout

is as follows: Section 3.2 defines and presents the main properties of the

profit and directional distance functions; Section 3.3 shows the main results

of the duality between directional distance and profit functions, according

to Chambers, Chung & Färe (1996, 1998). Furthermore, alternative proofs

of the lemma of Hotelling and Shephard are shown, using the concept of

directional distance function, the main result of this paper. Finally, Section

3.4 presents the paper’s final conclusions.

2 Profit and Directional Distance Function

In this section the profit function and directional distance function shall

be formally defined. In addition, the main structural properties of these

functions shall be presented.

2.1 The Profit Function

Let x ∈ RN
+ be an input vector and y ∈ RM

+ an output vector. Production

technology is a correspondence P : RN
+ ⇒ RM

+ defined as

2Allocative efficiency, however, is still maintained.
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P (x) = {y;x can produce y} (1)

which associates to each input vector x a subset of non-negativeM− ortant in

which production is feasible for this input vector. Observe that, for the case of

a single output and a single input, the graph of this correspondence generates

a set of possibilities for production as shown in Figure 1. Denominating as

T the correspondence graph P (x), the set T may therefore be defined as:

T = {(x,y);y ∈ P (x)} (2)

x1

x2

0

P(x)

x1

x2

0

P(x)

Figure 1: Production Correspondence

The usual axioms decribed below are necessary and sufficient to establish

Shephard’s (1970) duality theorem to be used later. These axioms are as

follows3:
3See also Färe & Primont (1995).
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P.1) P (x) is a closed set, limited and convex for any x ∈ RN
+ ;

P.2) Given, y ∈ RM
+ and x0 ≥ x, we have P (x) ⊆ P (x0) - free disposal of

inputs;

P.3) Given x ∈ RN
+ , if, y ∈ P (x) and y ≥ y0, then y0 ∈ P (x) - free disposal

of outputs;

P.4) If, y ∈ P (x) and x = 0, then y = 0 - no free lunch;

P.5) 0 ∈ P (x) for any x ∈ RN
+ - inanition.

Having defined these technological assumptions, the profit function is now

formally defined below.

Definition 1 Let x ∈ RN
+ an input vector, y ∈ RM

+ an output vector, P (x)

the production correspondence, w ∈ RN
+ and p ∈ RM

+ the vectors for price of

inputs and outputs respectively. The function π : RN
+ ×RM

+ → R defined by:

π(w,p) = sup
(x,y)≥0

{pTy−wTx; y ∈ P (x)} (3)

is denominated the profit function in (w,p).

The profit function has a series of usual properties such as homogeneity

of degree 1 in (w,p), concavity in (w,p), non-decreasing in p and non-

increasing in w.

2.2 The Directional Distance Function

In a series of studies, Luenberger (1992a, 1992b, 1994, 1995 e 1996), defines

and establishes the main structural and algebraic properties of the benefit
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function as being a measure of availability of an agent to exchange a certain

level of utility for a certain amount of comodity, relative to a reference vector

(of comodities). The adaptation of this device for production theory is due to

the work of Chambers, Chung & Färe (1996, 1998) who renamed the benefit

function, calling it the directional distance function.

Since then, a large number of papers have been dedicated to exploring

the structure and several applications of the directional distance function.

Using the notation introduced in the previous section, the following defi-

nition formally establishes the directional distance function.

Definition 2 Let x ∈ RN
+ an input vector, y ∈ RM

+ an output vector,

P (x) the production correspondence and, g = (−gx, gy) ∈ RN
+ × RM

+ , with

g 6= 0, a vector denominated direction vector. The function
−→
D : (RN

+ ×

RM
+ )× (RN

+ ×RM
+ )→ R defined by:

−→
D(x,y;−gx, gy) = sup{β ∈ R+ ; (x− βgx,y+ βgy) ∈ T} (4)

is denominated the directional distance function where β is larger or equal to

zero.

In illustrative terms, Figure 2 below shows how the directional distance

function is calculated. In this example, the direction vector is represented by

the lineOA nd the directional distance function is given by
−→
D(x,y;−gx, gy) =

OB/OA. Note that in Figure 2, the point projected by the directional dis-

tance function, (x− βgx,y + βgy), represents the choice which maximizes

profit, as it is located at the tangent between iso-profit and production tech-
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nology4. Thus, the point observed (x,y) although technically inefficient,

shows allocative efficiency in the prices that determine the slope of the iso-

profit line in Figure 2.

(x , y)

(x - βgx , y +  βgy)

y

x

(x , y/Do(x, y))

(x/Di(x, y) , y)

C D 
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O

A

B
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y
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y

x

(x , y/Do(x, y))
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Figure 2: Directional Distance Function and Shephard’s Distance Functions

Lemma 1 below establishes the main structural and algebraic properties

of the directional distance function. The proof of the results below may be

found in Luenberger (1992), Chambers, Chung & Färe (1996, 1998) and Briec

(2000).

Lemma 1 Suppose that technology satisfies the axioms P.1-P.5. The direc-

tional distance function satisfies the following properties:

D.1) (Translation)
−→
D(x−αgx,y+αgy;−gx, gy) =

−→
D(x,y;−gx, gy)−α, ∀α ∈

R;
4Chambers, Chung & Färe (1998) use the geometric argument in Figure 2 to interpret

the duality between the profit function and the directional distance function.
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D.2) (Continuity)
−→
D(x,y;−gx, gy) is superior semicontinuous in (x, y);

D.3) (Homogeneity)
−→
D(x,y;−λgx, λgy) = λ−1

−→
D(x,y;−gx, gy), ∀λ > 0;

D.4) (Monotonicity) The directional distance function is non-decreaseing

in x and non-increasing in y;

D.5) (Convexity)
−→
D(x,y;−gx, gy) is concave in (x,y);

D.6) (Full characterization)
−→
D(x,y;−gx, gy) ≥ 0⇔ y ∈ P (x).

As established by Chambers, Chung & Färe (1996, 1998), the directional

distance function generalizes several other distance functions such as Shep-

hard’s (1970) input and output distance functions.5. According to these

authors, the relationship between directional distance function and the input

and output distance functions are, respectively, given by:

−→
D(x,y; 0,y) =

1

Do(x,y)
− 1 (5)

−→
D(x,y;x, 0) = 1− 1

Di(x,y)
(6)

whereDo(x,y) andD i(x,y) are, respectively, the input and output distance

functions.6.
5The directional distance function also generalizes Gauge Function of McFadden (1978),

the translation function of Blackorby & Donaldson (1980) and the affine distance function
of Färe & Lovell (1978).

6The output distance function, D0(x,y), is defined as, D0(x,y) = inf{θ ∈ R+ :
(x,y/θ) ∈ T}. In other words, D0(x,y) measures the maximum proportional expansion
of the vector of outputs y so that the resulting production process is still feasible for a
given vector of inputs x. Similarly the input distance function, Di(x,y), is defined as
Di(x,y) = sup{θ ∈ R+ : (x/θ, y) ∈ T}. This measures the maximum contraction of the
vector of inputs x so that the vector of outputs y may be produced. With regard to the
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3 Dualities and Differential Properties

This section exposes the main results of duality involving the directional

distance function and the profit function, originally established in Chambers,

Chung & Färe (1996, 1998) and Färe (2000). The main findings of research

for this paper shall also be established.

3.1 Dualities

The finding presented below show that the directional distance function gen-

eralizes the dualities between the input and output distance functions and the

revenue and cost functions, respectively. Färe & Primont (1995) show that

the axioms P.1 - P.5 are necessary and sufficient conditions for establishment

of Shephard’s duality theorem (1970)7 (1970) as a pair of non-conditioned

optimizations.

Theorem 1 (Färe and Primont (1995)) Supposing that technology sat-

isfies axioms P.1 - P.5. Then, provided that Do(x,y) and Di(x,y) are the

input and output distance functions, respectively, we have:

R(x,p) = sup
y≥0

½
pTy

Do(x,y)

¾
(7.a)

Do(x,y) = sup
p≥0

½
pTy

R(x,p)

¾
(7.b)

example given in Figure 2, it is given that D0(x,y) = OE/OF and Di(x,y) = OD/OC.
The properties of these distance functions may be found in Shephard (1970) and Färe &
Primont (1995).

7Shephard show that if the tecnology satisfy the axioms P1-P5, then: C(y, w) =
inf
x≥0
{wTx;Di(x, y) ≥ 1} and R(x, p) = sup

y≥0
{pT y;Do(x, y) ≤ 1}.
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and

C(y,w) = inf
x≥0

½
wTx

Di(x,y)

¾
(8.a)

Di(x,y) = inf
w≥0

½
wTx

C(y,w)

¾
(8.b)

where R(x,p) and C(y,w) are, respectively, the functions of revenue and

production cost.

It should be noted that the results of duality of Theorem 1 are special

cases of duality between directional distance function and profit function, as

shall be seen later. Theorem 2, below, according to Chambers, Chung &

Färe (1998) is the main result of duality to be explored in this paper.

Theorem 2 (Chambers, Chung, and Färe (1998)) Suppose that tech-

nology satisfies the axioms P.1-P.5, then

π(w,p) = sup
(x,y)≥0

n
pTy−wTx+

−→
D(x,y;−gx, gy)(pTgy +wTgx)

o
and

−→
D(x,y; gx, gy) = inf

(p,w)

½
π(w,p)− (pTy−wTx)

pTgy +wTgx

¾
(10)

Based on the above results and using equations (5) and (6), it is possible

to demonstrate that the duality relationships (7) and (8) are specific cases of

duality between the profit function and directional distance function. This

is the content of the following corollary:

Corollary 1 Let x ∈ RN
+ and y ∈ RN

+ the vectors of inputs and outputs, re-

spectively,
−→
D(x,y;−gx, gy) the directional distance function on the direction

vector (−gx, gy), Do(x,y) and Di(x,y) the input and output distance func-

tions, respectively and finally, π(w,p), R(x,p) and C(y,w) the functions
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of profit, revenue and cost, respectively. Then, the following conditions are

verified:

a) If (−gx, gy) = (0,y) then equations (9) and (10) imply the duality re-

lationship (7);

b) If (−gx, gy) = (x, 0) then equations (9) e (10) imply the duality rela-

tionship (8).

Proof. Provided (−gx, gy) = (0,y), by (5) we have
−→
D(x,y; 0,y) = 1/Do(x,y)

-1. Substituting the latter expression in (10) we have:

1

Do(x,y)
− 1 = inf

(p,w)

½
π(w,p)− (pTy−wTx)

py

¾

= inf
(p,w)

½
π(w,p) +wTx)

pTy

¾
− 1

Therefore,

Do(x, y) = sup
(p,w)

½
pTy

π(w,p) +wTx

¾
(11)

In the event that the input vector x minimizes cost of production wTx, it

is shown in the Appendix that R(x,p) = π(w,p)+wTx. In these terms, sub-

stitution of this latter expression in (11) implies that:

Do(x,y) = sup
(p,w)

½
pTy

R(x,p)

¾

Which is precisely the second relationship of (7). To demonstrate the first

relationship of (7), it is considered that (−gx, gy) = (0,y).In this case, sub-
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stituting (5) in (9), we have:

π(w,p) = sup
(x,y)≥0

½
pTy−wTx+

µ
1

Do(x,y)
− 1
¶
pTy

¾

= sup
(x,y)≥0

½
pTy

Do(x,y)
−wTx

¾
Thus, for every (x,y) ∈ T we have π(w,p) ≥ pTy/Do(x,y)−wTx implying

π(w,p) +wTx ≥ pTy/Do(x,y). Thus, if x minimizes the cost wTx, then::

R(x,p) ≥ pTy

Do(x,y)

This implies that

R(x,p) = sup
y≥0

½
pTy

Do(x,y)

¾
which is precisely the first expression of (7). Thus (7) is completely proven.

To demonstrate the second relationship of (8), consider now (−gx, gy) =

(x, 0). Then, substituting from (6) in (10) and using the same logic to demon-

strate the second relationship of (7), we find:

Di(x,y) = inf
(p,w)

½
wTx

C(y,w)

¾
(12)

which coincides with the second expression of (8). On the other hand, pro-

vided (−gx, gy) = (0, y), we have
−→
D(x,y;x, 0) = 1 − (1/Di(x,y)).The sub-

stitution of this latter relationship in (9) implies that:

π(p,w) = sup
(x,y)≥0

½
pTy−wTx+

µ
1− 1

Di(x,y)

¶
wTx

¾
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= sup
(x,y)≥0

½
pTy− wTx

Di(x,y)

¾
Therefore, for every (x,y) ∈ T it is given that π(p,w) ≥

pTy − wTx/Di(x,y) implying pTy − π(p,w) ≤ wTx/Di(x,y). Thus, if

y maximizes revenue pTy then:

C(y,w) ≤ wTx

Di(x,y)

This implies that

C(y,w) = inf
x≥0

½
wTx

Di(x,y)

¾
.

This latter expression is exactly the relation (8.a). Thus, relationships in (8)

are proven.

In summary, Corollary 1 above shows that the results of Theorem 1 are

cases specific to Theorem 2. Below some of the differential properties of the

directional distance function are discussed, as is the proof of the Hotteling

and Shephard lemma.

3.2 Differential Properties

This section establishes the main findings of the research, the lemma of

Hotelling and Shephard. It is always assumed that the directional distance

function is twice continually differentiable in all its arguments8.

Proposition 1 (Hotelling’s lemma) Suppose that x ∈ RN
+ and y ∈ RM

+

are, respectively, vectors of inputs and outputs,
−→
D(x,y;−gx, gy) the direc-

8Regarding differentiability conditions of the directional distance function, consult
Courtalt, Crettez and Hayek (2004).
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tional distance function with direction vector (−gx, gy) and, π(p,w), the

profit function in prices (p,w). Furthermore, suppose that technology satis-

fies axioms 1-5 with strict convexity, then:

⎛⎜⎝ ∇pπ(p,w)

∇wπ(p,w)

⎞⎟⎠ =

⎛⎜⎝ y(p,w)

−x(p,w)

⎞⎟⎠ (13)

Proof. From first order conditions of the minimization problem in (9), it is

found that:

[∇wπ(p,w) + x(p,w)]−
1

(pT gy+wT gx)

h
π(p,w)−

³
pTy(p,w)−wTx(p,w)

´i
gx = 0N×1

(14)

[∇pπ(p,w)− y(p,w)]−
1

(pT gy+wT gx)

h
π(p,w)−

³
pTy(p,w)−wTx(p,w)

´i
gy = 0M×1

(15)

Due to the duality between the profit function and directional distance

function, y(p,w) and x(p,w), are the vectors of outputs and inputs that

maximize the profit according to the expression (9). Thus,

π(p,w) = pTy(p,w)−wTx(p,w)

and, therefore, equations (14) and (15) imply that:

⎛⎜⎝ ∇wπ(p,w)

∇pπ(p,w)

⎞⎟⎠ =

⎛⎜⎝ −x(p,w)
y(p,w)

⎞⎟⎠
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Note that in the proof above, the only stronger assumption used was the

strict convexity of the technology, so as to guarantee that the profit function

be well defined.

Proposition 1 has three important implications. The first is that the

result known as Hotelling’s lemma is proven without making use of the en-

velope theorem and, thus, without direct use of the structure of the opti-

mization process inherent in the problem of maximizing profit restricted to

technological conditions. In fact, only the first order conditions are used,

in consideration of the duality between the profit function and directional

distance function. Second, it shows how the directional distance function,

through its duality with the profit function, is used as a way of obtaining

a net supply of products through partial derivatives of the profit function.

Finally, it is observed that the method of proof used enables finding supplies

of products and demands for inputs that are technically inefficient, although

the maximization of profit requires allocative efficiency at the point of choice,

as illustrated in Figure 2 above.

Below, using Corollary 1, the directional distance function may also be

used to establish Shephard’s lemma (1953, 1970), according to which the con-

ditional supply and demand functions are found through partial derivatives,

with respect to input and output prices, of the cost and revenue functions

respectively.

Proposition 2 (Shephard’s lemma) Let x ∈ RN
+ and y ∈ RM

+ be the

input and output vectors combined under technology T . Also, let C(w,y)

be the cost function, R(x,p) the revenue function and
−→
D(x,y;−gx, gy) the

15



directional distance function. Thus, it is given that:

a) If (−gx, gy) = (x, 0), then ∇wC(w,y) = x(w,y);

b) If (−gx, gy) = (0,y), then ∇pR(p,x) = y(p,x);

Proof. According to Corollary 1, duality relationships (8) may be found

using the directional distance function by

1

1−−→D(x,y;x, 0)
= inf

w≥0

½
wTx

C(y,w)

¾
(16)

Using the first order conditions of the minimization problem in (16) we

have : ½
x(w,y)−∇wC(w,y)

∙
wTx(w,y)

C(w,y)

¸¾
= 0 (17)

By duality, x(w,y) resolves the problem in (8.a) and therefore

wTx(w,y) =C(w,y)

Thus (17) implies that:

∇wC(w,y) = x(w,y)

which demonstrates item a). To demonstrate b), the same logic is applied,

using the first order conditions of the maximization problem in (7.b) and the

duality relationship in (7.a).
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4 Conclusions

This paper establishes alternative proofs of traditional results in theory of

production. The use of duality between the profit function and the directional

distance function enables the latter to be used to establish Hotelling’s lemma,

a finding which obtains net supply of outputs through partial derivatives of

the profit function with regard to prices of inputs and outputs.

This paper also shows that the directional distance function generalizes

the dualities between the input distance function and cost function, and be-

tween the output distance function and the revenue function. Based on this

fact, it is proven that the directional distance function may be used to es-

tablish Shephard’s lemma, through which conditional supplies and demands

are found.

All the results cited here are established without making any reference

to the envelope theorem, which is traditionally the most commonly-used

resource to prove such results. Furthermore, the systems for input demand

and supply of outputs generated through the methodology used, do not need

to be technically efficient. That is, the proof is valid for points which are

within the production set, although the allocative efficiency hypothesis is

maintained.
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Appendix

In this appendix, it shall be proven that π(w,p) = R(x∗,p) − C(y∗, w).

Thus, let

(x∗,y∗) = arg sup
(x,y)∈T

©
pTy−wTx

ª
y0 = arg sup

(x,y)∈T

©
pTy

ª
x0 = arg inf

(x,y)∈T

©
wTx

ª
and π(p,w), R(p, x) and C(w, y) be the profit, revenue and cost functions,

respectively. Necessarily π(p, w) = R(p, x∗)−C(w, y∗) = R(p, x0)−C(w, y0).

Proof. Provided y0 = arg sup
(x,y)∈T

©
pTy

ª
, x0 = arg inf

(x,y)∈T

©
wTx

ª
and (x∗,y∗) =

arg sup
(x,y)∈T

©
pTy−wTx

ª
, then it is given that, respectively:

R(p,x) = pTy0 (A.1)

C(w,y) = wTx0 (A.2)

π(p,w) = pTy∗ −wTx∗ (A.3)

By construction of any feasible combinations of inputs and outputs and

in particular for (x∗,y∗) it is found that pTy0 ≥ pTy∗ and wTx0 ≤ wTx∗

implying that:

pTy0 −wTx0 ≥ pTy∗ −wTx∗ (A.4)

Using the expressions (A1), (A.2) and (A.3) the inequality in (A.4) may
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be re-written as:

π(p,w) ≤ R(p,x0)− C(w,y0) (A.5)

On the other hand, for any feasible pair (x,y) fit is given that π(p,w) ≥

pTy−wTx thus, in particular, it is given that π(p,w) ≥ pTy0−wTx0 which,

according to (A.1) e (A.2) implies that::

π(p,w) ≥ R(p,x0)− C(w,y0) (A.6)

Finally, combining (A.5) and (A.6) it is necessarily true that:

π(p,w) = R(p,x0)− C(w,y0)
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