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Abstract

This paper studies the problem of updating the super-replication prices of an
arbitrage-free market in a multiperiod setting. We introduce a set of standard
properties and a (weak) version of Dynamic Consistency to characterize the
updated pricing rules by the Full Bayesian Rule. Since different pricing rules are
related to different kinds of frictions on the financial markets, this study allow
us to analyze the evolution of the market structure when new informations
are revealed.

We also provide a geometric characterization for the pricing rules that
characterizes frictionless incomplete markets. This geometric property is useful
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to demonstrate that the incomplete frictionless market structure is invariant
under updating when a non trivial updating condition between the set of
risk-neutral measures and revealed information is present.

Keywords: Pricing rules · Full Bayesian Update · Ambiguity · Frictionless
incomplete market · Uniform bid-ask spreads

JEL Classification: D52 · D53

1 Introduction

When markets are complete and there are no frictions, a well-known result provided
by Cox and Ross (Ross (1976, 1978) and Cox and Ross (1976)) shows that the cost
of replication of any security is given by the mathematical expectation of its payoffs
stream under the unique state contingent price or risk-neutral probability obtained
by the no-arbitrage principle. That is, under this probability, the price process for
any asset is a martingale. Moreover, this is equivalent to the existence of an unique
stochastic discount factor.

This result is known in the literature as The Fundamental Theorem of Asset
Pricing and it is considered a cornerstone of the modern theory of Mathematical
Finance. Its main hypotheses relies on the lack of arbitrage opportunities and in the
absence of market frictions such as bid-ask spreads and transactions costs. On the
other hand, a growing empirical literature in Finance shows that the complete market
assumption is an exception in real markets and that frictions and transactions costs
plays an important role in the asset pricing. For instance, Luttmer (1996) used the
New York Stock Exchange (NYSE) data to indicate that, taking transactions costs
into accont, it is possible to make the low variability of the intertemporal marginal
rates of substitutions of typical representative agent models consistent with asset
returns.

In order to incorporate some of these frictions in the prices, the seminal work
of Jouini and Kallal (1995) proposed a model of sublinear pricing for markets with
no-arbitrage opportunities and in the presence of bid-ask spreads or incompleteness.
Their main result shows that, under these hypotheses, the super-replication pricing
rule of a given asset can be represented as the maximum of all expected values of its
payoffs under a set of risk-neutral measures.

Chateauneuf et al. (1996) characterized Choquet pricing rules assuming the
comonotonic additivity of the price functional. However, this axiom was criticized
by Cerreia-Vioglio et al. (2015) with the argument that it is a dificult property to
test. They propose an alternative set of axioms based also in the no-arbitrage but,
instead assume the comonotone additivity property, they assume the Put-Call Parity
for European options as the main property that ensures a Choquet valuation in a
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context of complete markets.
Araujo et al. (2012) main result characterizes the pricing rules that are associated

to frictionless incomplete markets. Also, they show that when a Choquet pricing
rule emerges from a frictionless incomplete market, the assets of this market form a
set of bets in a partion of the state space.

In this work, we are interested in analyze what happens with the market structure
when a new information is revealed, assuming that the information is incorporated
using the concept of Full Bayesian Update (that consists in update all priors). This
rule is also present in the works of Fagin and Halpern (1990), Jaffray (1992) and
Pires (2002). More recently, the papers of Faro and Lefort (2013) and Galanis (2014)
has studied weak forms of dynamic consistency under the Full Bayesian Update.

Our exposition is organized as follows: In the Section 2, we recall some definitons
and some well-known results present in the literature and give a new geometric
characterization for the set of risk-neutral measures of a frictionless incomplete
market. Section 3 provides a study of the invariant market structures under the Full
Bayesian Update. Section 4 concludes the paper and the proofs of the main results
presented along this work are collected in the Appendix.

2 Framework

The purpose of this first section is revisit the main definitions and results about
financial pricing rules which are super-replication rules of an arbitrage free market
with a frictionless bond. Our contibution that appears in this section provides a
novel geometric characterization for pricing rules of frictionless incomplete markets.

In the present work, we consider a three-period economy where the uncertainty
is modeled by a finite state space set S = {s1, s2, ..., sn} and t = 0, 1, 2 represent
the different time stages. An asset is a mapping X : S → R that ensures the
payment of X(s) units of wealth in each state of nature s ∈ S reveled in the period
t = 2. Let Σ be the family of all subsets of S. Let ∆ be the set of all probability
functions P : Σ → [0, 1] and let ∆+ be the set of all strictly positive probability
functions, i.e, P ∈ ∆+ when P (s) > 0 for all s ∈ S. For any probability P ∈ ∆
let supp[P ] = {s ∈ S | P (s)} be the support of P . Given an event E ∈ Σ and a
probability P ∈ ∆, we say that P has full support on E if supp[P ] ⊆ E.

In the initial period t = 0, the pricing rule describes the cost of to assume a
position X ∈ RS. At the interim stage t = 1, the uncertainty is partially solved
and the information whether the true state of nature is in a subset E ∈ S or not is
announced. At the final stage t = 2, the uncertainty is fully revealed and payment
promises are fulfilled.

Definition 1 A financial pricing rule C : RS → R is a function over future payoffs
contingenty to state space S = {s1, s2, ..., sn} in a three period context satisfying the
following assumptions:
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(i) C is sublinear, i.e.,
C(λX) = λC(X), and

C(X + Y ) ≤ C(X) + C(Y ),

for all X, Y ∈ RS and all non-negative real number λ;

(ii) C is arbitrage free, i.e., C(X) > 0 for any nonzero security X ≥ 0;

(iii) C is normalized, i.e., C(S∗) = 1;

(iv) C is monotonic, i.e., C(X) ≥ C(Y ) for all X, Y ∈ RS s.t. X ≥ Y ;

(v) C is constant additive, i.e.,

C(X + kS∗) = C(X) + k,

for all X ∈ RS and every real number k.

The following theorem that can be derived from Huber (1981), provides a dual
characterization for every financial pricing rule:

Theorem 1 (Huber) For any pricing rule satisfying conditions (i-v) there is a
closed and convex set K of probability measures, where at least one element is strictly
positive, such that for any security X

C(X) = max
P∈K

EP (X)

A main example of pricing rule is the super-replication price of a securities
market M =

{
(Xj, q

A
j , q

B
j ); 0 ≤ j ≤ m

}
, where Xj ∈ RS are the tradeable assets

with respective ask price qAj and bid price qBj . Then, the super-replication price is
given by

C(X) = inf

{∑
j

θjq
A
j −

∑
j

φjq
B
j | (θ, φ) ∈ R2(m+1)

+ ∧
∑
j

(θj − φj)Xj ≥ X

}
,

where θj denotes the number of units of asset j bought and φj denotes the number
of units of asset j sold.

Observe that the above function is well-defined for all markets that offers no-
arbitrage opportunities and one of its tradeble assets is the frictionless normalized
riskless bond. That is, X0 = S∗ := (1, 1, ..., 1) and qA0 = qB0 = 1. Furthermore, under
these hypotheses, the result provided by Jouini and Kallal (1995) reports that the
super-replication price can be represented as

C(X) = max
P∈Q

EP (X),
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where Q is the closure of the set of risk-neutral probabilities defined as:

Q :=
{
P ∈ ∆+ | qAj ≤ EP (Xj) ≤ qBj , ∀0 ≤ j ≤ m

}
.

Hence, every super-replication price of a securities market with no-arbitrage oppor-
tunities is a pricing rule as mentioned in Definition 1. However, the converse is not
always true. As noticed by Araujo et al. (2015), using the Theorem 2.4.6 of Schnei-
der (1993) it is possible to demonstrate that the closure of the set of risk-neutral
probabilities characterizes a market with a finite number of securities if and only if
this set is a polytope1. They also provide a characterization interim of pricing rules
of “finitely generated pricing rules”.

For every pricing rule, Araujo et al. (2012) introduced the following sets:

FC :=
{
X ∈ RS | C(X) + C(−X) = 0

}
;

LC :=
{
X ∈ RS | ∀Y ∈ RS s.t. Y > X, C(Y ) > C(X)

}
;

QC := {P ∈ ∆ | EP (X) = C(X), ∀X ∈ FC} .
The first is the set of all frictionless securities. That is, it is the set of all assets

that can be bougth and sold by the same price. The second is the set of all undomi-
nated securities. And the third is the set of all probabilities that agree about the
price of every frictionless securities.

The main result in Araujo et al. (2012) is a complete characterization of those
pricing rules C(·) that are super-replication prices of a frictionless and arbitrage-free
incomplete market with a frictionless bond. Their characterization relies on the
equivalence between the set of frictionless securities and undominated securities
defined by C(·). More precisely:

Theorem 2 (Araujo, Chateauneuf and Faro) A pricing rule C is a super- repli-
cation price of a frictionless and arbitrage-free complete or incomplete market of
tradeable securities including the riskless bond if, and only if, C is a financial pricing
rule satisfying FC = LC.

In the oncoming result, we characterize this same market structure looking to
the geometric properties of the set of risk-neutral measures K. In order to establish
that result, we first present the following definition:

Definition 2 A set P ⊂ ∆ is called non-expansible if

{αP + (1− α)Q | P,Q ∈ P , α ∈ R} ∩∆ = P .

1A set P ⊂ ∆ is called a polytope if there exist P1, ..., Pk ∈ ∆ such that P = conv{P1, ..., Pk}.
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We assume that the empty set is non-expansible. Observe that the only non-
expansible sets P such that P ⊂ ∆+ are the singletons. Futhermore, any non-
expansible set with at least two points have its extremal points over the frontier of
the simplex ∆. Nonetheless, that is not a sufficient condition to determine whether
a polytope is or not expansible. As illustrated in Figure 1, the left set is expan-
sible since its extremal points (A and B) are strictly positive probabilities and
the set in the right which its extremal points (C and D) are on the frontier of ∆
is a non-expansible set. On the other hand, the extremal points of the polytope
P = conv{(0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5)} lies on the frontier of ∆ but P is a
expansible set. In fact, observe that P = (0.5, 0.25, 0.25) and Q = (0, 0.5, 0.5) are
two points of P and for α = 1.5 we have that αP + (1−α)Q = (0.75, 0.125, 0.125) is
a positive probability which not lies on P (see Figure 2). This latter example was
also analysed by Araujo et al. (2015) and they showed that the underlying market
for this set of risk-neutral measures has frictions over tradeable securities.

Figure 1: Example of an expansible set (left) and its “expanded version” (right).

Figure 2: The polytope P is expansible.

Now, we present our first result about pricing rules. It is a complete geometric
characterization for any pricing rule which is super-replication rule of a frictionless
and arbitrage free market with a frictionless bond.

Theorem 3 Let K be a non-expansible polytope with at least one interior point, then

C(X) := max
P∈K

EP (X),
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satisfy LC = FC. Also, if C is a pricing rule satisfying FC = LC, then K is a
non-expansible polytope with at least one interior point.

Notice that the geometric property of non-expansibility of the set of risk-neutral
measures could appears more naturally to the empirical finance literature than the
analytical equivalence between LC and FC . Also, could be hard to highlight the
set LC of all undominated securities since this property requires a contingent claim
representation for the assets considered. Despite of natural errors in collected data,
it could be worthwhile use empirical analysis in order to distinguish the markets
which are incomplete and frictionless from those are not.

Theorem 4 Let K a polytope with a finite number of extremal points given by
{Q1, ..., Qn}. Define the set

K̃ :=

{
n∑
i=1

αiQi | αi ∈ R and
n∑
i=1

αi = 1

}
∩∆.

Then, K̃ is the smallest (by inclusion) non-expansible set which contains K. That is,

K̃ =
⋂
L⊇K

{L | L is expansible}.

Suppose a situation where we have a pricing rule C with set of risk-neutral
measures given by a expansible set K and we do not have to much information
about it. Next, we find a result with a clear message about K̃. Is it possible to tell
something about the original pricing rule C?

Proposition 1 Let C(X) = max
P∈K

EP (X) the super-replication pricing rule of a given

arbitrage-free financial market M. Let K̃ be the smallest non-expansible set which
contains K. Then, the pricing rule C̃(X) := max

P∈K̃
EP (X) is the super-replication

pricing rule of a frictionless and arbitrage-free financial market M̃ such that

FC = FC̃ .

That is, M and M̃ have the same set of frictionless securities.

3 Updating Pricing Rules

Suppose that in some point of the time between the purchases and the securities
liquidation, a new information about the true state of nature is revealed. How this
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information impacts the asset prices? Is it possible a change in the market structure
after this revelation? In this section, we propose a novel approach to characterize
the updated pricing rules which satisfies the standard conditions proposed in the
Definition 1 and the forthcoming property called Dynamic Consistency to Certainty.

Given an event E ⊆ S and a fixed pricing rule C, we say that E is relevant if
−C(−E∗) > 0. Notice that if E is relevant, then P (E) > 0 for all P ∈ K, where K
is the set of risk neutral measures which characterizes the pricing rule C. Let R be
the set of all relevants events. Let us denote the updating pricing rule by CE(·). In
order to CE(·) be qualified as a pricing rule2, it is necessary that CE(·) satisfies the
five conditions present in Definition 1. Moreover, let us focus on the case where the
set of risk-neutral measures is a polytope. Also, we impose a property which links
the unconditional and the conditional pricing rules in a restrictive class of assets. For
any asset X and real number k we define the asset XEk as XEk(s) = X(s) when
s ∈ E and XEk(s) = k when s ∈ EC . Inspired in the axiomatic approach proposed
by Pires (2002), we have the following definition:

Definition 3 A given collection of pricing rules {C,CE}E∈R satisfies the Dynamic
Consistency to Certainty (DCC) property if for any asset X and real number k,

C(XEk) ≥ k if and only if CE(X) ≥ k.

In other words, given an event E and an asset Y = XEk that is potential risky
on E and riskless on EC . That is, the asset Y delivery the same amount k in every
state s ∈ EC . If the unconditional price of Y is greater than or equal to k, then its
conditional price must also be greater than or equal to k.

Since CE is a pricing rule, there a set of risk neutral measure L such that
CE(x) = maxP∈LEP (X). Then, it is possible to ask which conditions ensures there
is a relation between the sets L and KE := {PE ∈ ∆ | P ∈ K}, where PE is the
Bayesian Update of the probability P , given by PE(F ) = P (F ∩ E)/P (E) for every
F ⊆ S. The next result shows that Full Bayes Rule is the unique pricing rule that
satisfies the DCC property.

Theorem 5 Let C(·) be a pricing rule characterized by set K and R be the set of
relevant events. Then, the following conditions are equivalent:

(i) The collection of pricing rules {C,CE}E∈R satisfies the DCC property.

(ii) The updated pricing rule is given by CE(X) := max
P∈KE

EP (X), for all E ∈ R.

2Observe that CE(·) must be an application from RE to R. Then, CE(X) means CE(X̃), where
X̃ ∈ RE is the restriction of X under E.
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This Theorem states that if the DCC property is satisfied and P (E) > 0 for all
P ∈ K, then the set of risk neutral measures should be updated by the Full Bayesian
Rule. The idea of update all probabilities of a given set was first proposed by Fagin
and Halpern (1990) and Jaffray (1992). Pires (2002) and Faro and Lefort (2013)
provided a decision-theoretic axiomatization of the Full Bayesian Rule in different
frameworks. We are unware of any other work which was provided an axiomatization
of updating pricing rules.

In the remainder of this section we analyze what happens with different market
structures when a new information is revealed. Henceforward, we always assume
that K ⊆ ∆ is a set of probabilities, E ∈ Σ an event such that P (E) > 0 for all
P ∈ K and that KE = {PE ∈ ∆ | P ∈ K} is the set of conditional probabilities PE.

3.1 Updating Incomplete Frictionless Markets

An important class of pricing rules are those ones that represents a super-replication
price of an incomplete frictionless market. As commented early, these pricing rules are
characterized by non-expansible sets. Therefore, a natural question arises: Is the Full
Bayesian Update of a non-expansible set, also non-expansible? Unfortunately, this is
not true in general. As shown in the next example, the update of a non-expansible
set can be expansible.

Example 1 Consider the pricing rule C : R3 → R defined by,

C(X) = max{EP (X), EQ(X)},

where P =
(

1
2
, 1

2
, 0
)

and Q =
(

1
2
, 0, 1

2

)
. Note that the underlying set of risk-neutral

probabilities is given by K = {αP + (1− α)Q | α ∈ [0, 1]} . If the event E = {s1, s2}
is revealed, the Bayesian update of the above set is

KE = conv

{
(1, 0),

(
1

2
,
1

2

)}
.

This example shows that, starting in a situation where the financial market
is frictionless but incomplete, it is possible to obtain bid-ask spreads performing
updates given by the Full Bayesian Rule. Therefore, if the unconditional set of risk
neutral measures is non-expansible, we need to impose an additional hypothesis
under this set in order to ensure that its Bayesian update is also a non-expansible
set.

Definition 4 Let ∆(E)+ be the set of strictly positive probabilities over E. We say
that KE is a non trivial updating of K under the relevant event E if for every
P ∈ KE ∩∆(E)+ there is a probability Q ∈ K such that Q(s) > 0 for all s ∈ EC and
QE = P .
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Observe that, when the non trivial updating condition is present, if there is
P ∈ K ∩∆(E)+, then PE = P . The existence of another probability Q 6= P such
that QE = PE can be interpreted as an ambiguity to choose the “correct” prior.
The next result shows that the incomplete frictionless market structure is invariant
under updating when a non trivial updating condition is present.

Theorem 6 If K is the set of risk-neutral measures of a frictionless complete or
incomplete finite market and E ∈ Σ an event such that P (E) > 0 for all P ∈ K,
then are equivalent:

(i) KE is a non trivial updating of K;

(ii) KE is the set of risk-neutral measures of a frictionless incomplete finite market;

Backing to Example 1, notice that non trivial updating condition is not present.
Indeed, P =

(
1
2
, 1

2
, 0
)
∈ K ∩∆(E)+ but there is no other probability Q ∈ K such

that Q 6= P and QE = P . Observe that, although K to be a non-expansible set
characterizing a frictionless incomplete market, the set KE is expansible and related
with a market with bid-ask spreads (see Figure 3).

Figure 3: When the non trivial updating condition is not present.

3.2 Updating Markets with Uniform Bid-Ask Spreads

Now, we provide a result about the invariance of market’s structure when frictions
are present. More specifically, we analyze what happens to a complete market with a
frictionless bond and uniform bid-ask when a new information is revealed. We define
this class of market in the same way as given by Araujo et al. (2015):

Definition 5 We say thatM =
{
Xj; (qAj , q

B
j )
}m
j=0

is market with a frictionless bond

and uniform bid-ask spreads if:

i) X0 = S∗, m = #S, and for all j ∈ S, Xj = {j}∗;
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ii) For all j ∈ S, the bid-ask spread prices of Xj = {j}∗ is given by

qAj − qBj = ε and 1−
m∑
j=1

qBj = ε.

Araujo et al. (2015) showed that all markets with a frictionless bond and uniform
bid-ask can be characterized by a set of risk-neutral measures K such that K =
(1− ε)Q+ ε∆ for some probability Q ∈ ∆+. In this case, the pricing rule is a convex
combination between the “pure price” EQ(X) and the worst scenario payoff for the
seller. That is,

C(X) = (1− ε)EQ(X) + εmax
s∈S

X(s).

Furthermore, the bid-ask spread for any asset X is given by

BA(X) = ε(max
s∈S

X(s)−min
s∈S

X(s)).

Unlike the case of incomplete frictionless market, this result do not require any
strong condition over the underlying market. Indeed, no extra condition is necessary
to demonstrate the preservation of the market structure.

Theorem 7 The structure of a market with a frictionless bond and uniform bid-ask
spreads is always preserved by Bayesian update. Furthermore, the updated bid-ask
spread is given by

γ :=
ε

(1− ε)
∑
s′∈E

Q(s′) + ε
.

As an immediate consequence of the previous result, observe that it is possible
calculate the updated bid-ask spread of any asset X in terms of its payoff and the
pure price Q. In fact, we have

BAE(X) := γ(max
s∈E

X(s)−min
s∈E

X(s)).

Furthermore, we can focus on the bid-ask updating ratio given by

σE(X) :=
BAE(X)

BA(X)
.

When the sets {arg maxs∈S X(s)}∩E and {arg mins∈S X(s)}∩E are non-empty,
this ratio becomes

σE(X) =

(
(1− ε)

∑
s′∈E

Q(s′) + ε

)−1

≥ 1.
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Then, when the market is dealing with some asset which its worst and best scenarios
are not excluded after an early resolution of the uncertainty, the new information
will increase the asset’s friction, raising its bid-ask spread. However, the increase in
the bid-ask spread does not occur for all assets.

Example 2 Consider a complete market with pure price Q = (0.25, 0.25, 0.25, 0.25)
and uniform bid-ask spread given by ε = 0.5. Let X = (5, 3, 2, 1) be a particular asset
and let E = {s2, s3} be an event revealed at t = 1. Then,

BA(X) = 0.5(5− 1) = 2 and BAE(X) =
0.5

0.5(0.25 + 0.25) + 0.5
(3− 2) = 0.667.

Observe that the best and the worst payoffs of the asset X occurs in states which are
outside the event E. Then, the large distortion that these payoffs cause in prices will
no more be present when the event E is revealed, diminishing the bid-ask spread.

3.3 Updating Markets with Put-Call Parity

In this subsection we want to analyze if a new information can affect the Put-Call
Parity (henceforth PCP) in a particular market. Given a asset X ∈ RS, we denote
by KX

q the call option on X with strike price q ≥ 0 and PX
q the put option with

strike price q ≥ 0. Since KX
q is the contingent claim given by (X − qS∗)+ and PX

q is
given by (qS∗ −X)+, we have following equality:

KX
q − PX

q = X − qS∗.

A pricing rule C satisfy the PCP if

C(KX
q ) + C(−PX

q ) = C(X)− q.

As a straightforward consequence of the main result presented by Cerreia-Vioglio et al.
(2015), it is possible to show that all pricing rules which satisfies the PCP property
are given by the Choquet’s integral of a given concave capacity ν. Furthermore, the
market’s set of risk-neutral measures is the anticore of this capacity ν.3

The next example shows that the Put-Call Parity is not an invariant property
when the market’s fundamentals are updated through the Full Bayesian Rule.

3A capacity ν is concave if:

ν(A ∪B) + ν(A ∩B) ≤ ν(A) + ν(B),∀A,B ⊂ S.

The anticore of the capacity ν is the closed, convex and bounded set:

core(ν) = {P ∈ ∆ : P (A) ≤ ν(A) ∀A ∈ Σ} .
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Example 3 Consider S = {s1, s2, s3, s4} and the following concave capacity ν such
that

ν(s1) = ν(s2) = ν(s4) =
5

8
, ν(s3) =

3

8

ν(si ∪ sj) =
6

8
and ν(S − {si}) =

7

8

The anticore of this capacity is given by K = co{P1, P2, P3, P4, P5, P6}, where

P1 =

(
5

8
,
1

8
,
1

8
,
1

8

)
; P2 =

(
1

8
,
5

8
,
1

8
,
1

8

)
; P3 =

(
1

8
,
1

8
,
1

8
,
5

8

)
;

P4 =

(
3

8
,
1

8
,
3

8
,
1

8

)
; P5 =

(
1

8
,
3

8
,
3

8
,
1

8

)
; P6 =

(
1

8
,
1

8
,
3

8
,
3

8

)
;

However, if we consider the event E = {s2, s3, s4}, the updated set KE of new
risk-neutral measures will be given as the convex hull of PE

2 , PE
3 , PE

4 , PE
5 , PE

6 . In
this case, KE cannot be the anticore of a concave capacity µ. Otherwise, µ would be
given by

µ(A) = max
P∈KE

EP (A)

and P ∗ = ( 9
35
, 3

5
, 1

7
) ∈ ∆(s2, s3, s4) is such that P ∗ ∈ acore(µ), but P ∗ 6∈ KE.

Figure 4: Geometric representation of the sets K and KE presented in the Example
3.

A natural question that arises in this context is whether there is any direct relation
between CE(X) and C(X) or not. In general, it is not possible determine CE(X)
in terms of C(X) through a closed formula. However, when the set of risk-neutral
measures K of a particular market is the anti-core of a regular concave capacity ν, a
formal relation between CE(X) and C(X) exists for all assets X.

If ν is a concave capacity and E is an event such that ν(EC) < 1, we define the
Full Bayesian Update of ν given the event E as:

νE(A) = sup{PE(A) | P ∈ acore(ν)},∀A ⊂ E.
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When ν is concave, Jaffray (1992) have showed that νE can be written as the
following:

νE(A) =
ν(A)

ν(A) + 1− ν(A ∪ EC)
. (1)

A concave capacity ν is called regular if acore(νE) = (acore(ν))E and ν(EC) < 1 for
every event E 6= ∅.

Theorem 8 Let C be a pricing rule given by C(X) = max
P∈K

EP (X). Then, the

following assertions are equivalents:

(i) For every event E 6= ∅, CE(X) is a Choquet integral.

(ii) The set K is the anti-core of a regular concave capacity ν.

(iii) For every event E 6= ∅, CE(X) =
∫
XdνE, where νE is defined as in (1) and

ν := νS is the unique capacity such that acore(ν) = K.

In other words, the Theorem 8 states that the PCP property is invariant through
all possible non empty events E if and only if the set of risk-neutral measures is the
anti-core of a regular concave capacity ν. This kind of capacity has been analysed in
the work of Chateauneuf et al. (2011). Such capacities are concave strictly monotonic
(ε, δ)-contaminations4. In particular, markets with uniform bid-ask spreads are
generated by the so-called ε-contamination capacities (when δ = 0). Therefore, from
Proposition 3 in Chateauneuf et al. (2011) it is posible to see that the Theorem 8 is
a generalization of the Theorem 7.

4 Conclusion

In this paper, we present a geometric characterization for the set of risk-neutral
measures of an incomplete frictionless market. This technical finding allow us proof
that the incomplete market structure is invariant under the Full Bayesian Update
when the non trivial updating condition is present. Another important contribution
is the axiomatization for the updating pricing rules satisfying a (weak) dynamic

4 A capacity ν on (S,Σ) is a concave strictly monotonic (ε, δ)-contamination if there exists a
probability P0 strictly positive and ε, δ ∈ R such that

ν(A) = (1− ε)P0 + ε+ δ,

for all A 6= ∅ or A 6= S, ν(∅) = 0 and ν(S) = 1, δ ∈
[
0, α

1−α

]
and ε ∈

[
−δ, 1− δ

α

]
, where

α = min
s∈S

P0({s}).
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consistency property. We also provide a result in which the markets preserve the
Put-Call Parity property after a partial resolution of the uncertainty.

However, some problems remain open. For instance, we do not know which
conditions are necessary to maintain the set of risk-neutral measure as the anti-core
of a non-regular concave capacity. This question is important since it is related to
the Put-Call Parity. These issues will be our starting point in a future research about
updating pricing rules.

5 Appendix

Proof of Theorem 3: Suppose that X 6∈ FC and let Q1, Q2, ..., Qn be all the extremal
points of K such that EQ1(X) = · · · = EQn(X) = C(X). That is,

{Q1, Q2, ..., Qn} = Ext(K) ∩ arg max
P∈K

EP (X).

Since X 6∈ FC , there is P ∈ K such that C(X) > EP (X). Indeed, by Lemma 4 in
Araujo et al. (2012), it is known that X ∈ FC if and only if EP (X) = EQ(X) for all
P,Q ∈ K. Furthermore, by the Krein-Milman’s Theorem5, we can assume without
loss of generality that P is also an extremal point of K. Indeed, if C(X) = EP (X)
for all P ∈ Ext(K), then C(X) = EP (X) for all P ∈ K, a contradiction.

Observe that there is a state s such that Qi(s) = 0 for all i = 1, ..., n. Otherwise,
the probability Q defined as Q =

∑
1
n
Qi is an interior point of the simplex ∆.

Therefore, there will be a positive real ε such that (ε+ 1)Q− εP ∈ ∆. Furthermore,
since K is non-expansible, we have that (ε+ 1)Q− εP ∈ K.

On the other hand,

E(ε+1)Q−εP (X) = EQ(X) + ε(EQ(X)− EP (X)) > EQ(X) = C(X).

And this cannot be true.
Now, if s is a state such that Qi(s) = 0 for all i = 1, ..., n, define

Y = X + δ{s}∗.

For any extremal point P such that C(X) > EP (X) we can choose δ > 0
sufficiently small such that C(X) > EP (X + δ{s}∗). Since the number of extremal
points of K is finite, we can choose δ > 0 such that C(X) > EP (X + δ{s}∗) for all
extremal point P 6∈ {Q1, Q2, ..., Qn}.

Therefore, it is possible to choose Y = X + δ{s}∗. such that Y > X and
C(Y ) = C(X). Hence, X 6∈ LC .

5The Krein-Milman’s Theorem says that any convex and compact set (in Rn) is the convex hull
of its extremal points (see Corollary 18.5.1, page 167 of Rockafellar (1997)).
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Since FC ⊂ LC for all pricing rules, the first part of the theorem follows.
The converse is also true: If C is a pricing rule such that FC = LC , by the Lemma

21 proved in Araujo et al. (2012), then

K = QC := {P ∈ ∆ | EP (X) = C(X),∀X ∈ FC}.

Note that QC is a non-expansible set. Indeed, if P1, P2 ∈ QC and α ∈ R such that
αP1 + (1−α)P2 ∈ ∆, it is immediate to see that we also have αP1 + (1−α)P2 ∈ QC .
Therefore, K is a non-expansible set. �

Proof of Theorem 4: We devide the proof in three small steps. First, by definition
K ⊂ K̃ ⊂ ∆. Now, observe that K̃ is a convex set. Indeed, let P,Q ∈ K̃ be two
probabilities with

P =
n∑
i=1

αiQi and Q =
n∑
i=1

βiQi,

where αi, βi ∈ R with
∑n

i=1 αi =
∑n

i=1 βi = 1. If θ ∈ [0, 1], then

θP + (1− θ)Q =
n∑
i=1

(θαi + (1− θ)βi)Qi ∈ K̃.

Second, let us prove that K̃ is non-expansible. If P,Q ∈ K̃, there are αi, βi ∈ R with∑n
i=1 αi =

∑n
i=1 βi = 1 such that

P =
n∑
i=1

αiQi and Q =
n∑
i=1

βiQi,

Let θ ∈ R be a parameter such that

θP + (1− θ)Q =
n∑
i=1

(θαi + (1− θ)βi)Qi ∈ ∆.

Since
∑n

i=1(θαi + (1 − θ)βi) = 1, we have θP + (1 − θ)Q ∈ K̃. Therefore, K̃ is
non-expansible. Finally, let C be a non-expansible set such that K ⊂ C. Let us
prove that K̃ ⊂ C. Suppose that R ∈ K̃. By definition, there are αi ∈ R such that∑n

i=1 αi = 1 and R =
∑n

i=1 αiQi. Assume without loss of generality that αi > 0 for
all 1 ≤ i ≤ m and αi ≤ 0 for all m+ 1 ≤ i ≤ n. Let α =

∑n
i=1 αi be the sum of all

positive weights. Observe that R can be rewritten as

R = α
m∑
i=1

αi
α
Qi + (1− α)

n∑
i=m

αi
1− α

Qi.
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Since the weights
(
αi

α

)
, when αi > 0 and

(
αi

1−α

)
, when αi ≤ 0 are all positive, we

must have R ∈ C. Therefore,

K̃ =
⋂
K⊆L

{L | L is expansible}.

�

Proof of Proposition 1: Given a pricing rule C and the corresponding set FC , recall
that X ∈ FC if and only if EP (X) = EQ(X) for all P,Q ∈ Q. Now, suppose

that X ∈ FC̃ . Then, EP (X) = EQ(X) for all P,Q ∈ K̃. Since K ⊂ K̃, we have
EP (X) = EQ(X) for all P,Q ∈ K. Therefore, X ∈ FC .

Now, if X ∈ FC , we have EQi
(X) = EQj

(X) for all extremal points Qi, Qj ∈ K.
Then, for every two vectors α ∈ Rn and β ∈ Rm such that

∑n
i=1 αi =

∑m
i=1 βi = 1

and
∑n

i=1 αiQi ∈ ∆,
∑m

i=1 βiQi ∈ ∆, we have

E∑n
i=1 αiQi

(X) = E∑m
i=1 βiQi

(X).

Therefore, X ∈ FC̃ . �

Proof of Theorem 5: (ii)⇒ (i). It is straightforward to see that CE(·) given by the
Full Bayesian Update rule fulfills all properties which defines a pricing rule. That is,
CE(·) is sublinear, arbitrage free, normalized, monotonic and constant additive. In
order to prove the DCC property, we first assume that C(XEk) ≥ k. Then, there is
P0 ∈ K satisfying ∑

s∈E

P0(s)X(s) + kP0(EC) ≥ k

Since P0(E) > 0 by hypothesis, then EPE
0

(X) ≥ k. Therefore, CE(X) ≥ k.

(i) ⇒ (ii). Since CE(·) is a pricing rule, there is a closed and convex set L of
probabilities on E, where at least one element has full support and

CE(X) = max
P∈L

EP (X).

We must show that L = KE. Suppose that there is P0 ∈ L \ KE. By the Separating
Hyperplane Theorem, there is X such that EP0(X) > EQ(X) for all Q ∈ KE.
Taking k = EP0(X), we have that CE(X) ≥ k. Therefore, by the DCC property,
C(XEk) ≥ k. On the other hand,

C(XEk) = max
P∈K

(∑
s∈E

P (s)X(s) + kP (EC)

)
=
∑
s∈E

P1(s)X(s) + kP1(EC),

for some P1 ∈ K. Using the hypothesis P1(E) > 0, then EPE
1

(X) ≥ k. A contradic-

tion, since k > EQ(X) for all Q ∈ KE.
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Now, suppose that there is PE
0 ∈ KE \ L, where P0 ∈ K. By the Separating

Hyperplane Theorem, there is X such that EPE
0

(X) > EQ(X) for all Q ∈ L. In this

case, k > CE(X), where k = EPE
0

(X). Observe that

C(XEk) ≥
∑
s∈E

P0(s)X(s) + kP0(EC).

Then,

C(XEk)

P0(E)
≥
∑
s∈E

P0(s)X(s)

P0(E)
+ k

P0(EC)

P0(E)
= k + k

P0(EC)

P0(E)
=

k

P0(E)
.

Since C(XEk) ≥ k implies CE(X) ≥ k by the DCC property, we have a contradic-
tion. �

In order to become the demonstration of Theorem 6 smoother, we first present
some useful results. The first can be found in Jaffray (1992) and shows that the set
of conditional risk-neutral probabilities KE of a convex and compact set K is also a
convex and compact set.

Lemma 1 Let P,Q ∈ ∆ be two probabilities such that P (E), Q(E) > 0 and α ∈ (0, 1)
a real number. Then, for the real number β defined by

β :=

(
P (E)

Q(E)

1− α
α

+ 1

)−1

,

we have (βP + (1− β)Q)E = αPE + (1− α)QE.

Proof. It is not difficult to verify that

βP (F ∩ E) + (1− β)Q(F ∩ E)

βP (E) + (1− β)Q(E)
= α

P (F ∩ E)

P (E)
+ (1− α)

Q(F ∩ E)

Q(E)
,

for all events F ⊂ ∆. Indeed, if P (F ∩ E) = x, Q(F ∩ E) = y, P (E) = z and
Q(E) = w, then β = αw

z+α(w−z) . Therefore,

βP (F ∩ E) + (1− β)Q(F ∩ E)

βP (E) + (1− β)Q(E)
=

αw(x−y)
z+α(w−z) + y

αw(z−w)
z+α(w−z) + w

=

=
αw(x− y) + zy + αy(w − z)

αw(z − w) + wz + αw(w − z)
=
α(wx− yz) + zy

wz
= α

(x
z
− y

z

)
+
y

z
.

Changing back the variables x, y, z, w we have the desired result. �

Using induction over the number of probabilities, it is possible to demonstrate
the following important corollary:
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Corollary 1 Let K = conv{P1, ..., Pm} be the convex hull of the probabilities P1,
P2,..., Pm. If Pi(E) > 0 for all 1 ≤ i ≤ m, then KE = conv{PE

1 , ..., P
E
m}.

Observe that the previous lemma can be extended for values of the parameter α
outside the interval (0, 1) and for signed probabilities:

Lemma 2 Let P,Q be two signed probabilities such that P (E) · Q(E) 6= 0 and

P (E) 6= Q(E). Let α 6= P (E)
P (E)−Q(E)

be a real number. Then, for the real number β
defined by

β :=

(
P (E)

Q(E)

1− α
α

+ 1

)−1

,

we have (βP + (1− β)Q)E = αPE + (1− α)QE.

Proof. Identical to the Lemma 1. In fact, to demonstrate the previous lemma, it
was not necessary use the hypothesis of positive probabilities measures. Now, let us
constrast useful relations between α and β:

(i) If P (E) ·Q(E) > 0, then

∂β

∂α
=

P (E) ·Q(E)

((1− α)P (E) + αQ(E))2
> 0.

(ii) If P (E) > Q(E) > 0 and α = λ · P (E)
P (E)−Q(E)

with λ ∈
(
P (E)−Q(E)

P (E)
, 1
)

, then

β = λ
1−λ

Q(E)
P (E)−Q(E)

> 1 and βP (E) + (1− β)Q(E) > 0.

(iii) If Q(E) > P (E) > 0 and α = λ · P (E)
Q(E)−P (E)

with λ ∈
(
Q(E)−P (E)

P (E)
, 1
)

, then

β = λ
1+λ

Q(E)
Q(E)−P (E)

> 1 and βP (E) + (1− β)Q(E) > 0.

The above condition stating that βP (E)+(1−β)Q(E) > 0 for α ∈
(

1, P (E)
‖P (E)−Q(E)‖

)
will be useful to proof the Theorem 6. In order to become the demonstration of this
theorem smoother, we will present first the following lemma:

Lemma 3 If K is a convex polytope and expansible set, there are probabilities
P,Q ∈ K and a real number ᾱ > 1 such that αP + (1 − α)Q ∈ ∆ \ K for all
α ∈ (1, ᾱ].

Proof. Since K is expansible, there are Q,R ∈ K and θ̂ such that θ̂R+(1−θ̂)Q ∈ ∆\K.
Now, let θ̄ be the extremal value for the parameter θ in the following sense:

θ̄ := max{θ | θR + (1− θ)Q ∈ K}. (2)

Since K is a convex polytope, the condition θR + (1 − θ)Q ∈ K can be expressed
as a linear system Aθ ≤ b. So, the problem (2) has a solution and by linearity this
solution is unique. Therefore, θ̄ is well-defined.

Now, observe that
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i) θR + (1− θ)Q ∈ K for all θ ∈ [1, θ̄];

ii) θR + (1− θ)Q ∈ ∆ \ K for all θ ∈ (θ̄, θ̂].

This assertion can be visualized as shown in the Figure 5. Taking P = θ̄R+ (1− θ̄)Q
and ᾱ = θ̂/θ̄, we have the desired result. �

Figure 5: Geometric representation of the Lemma 3

Remark. When K has at least one strictly positive element, then the probabilities
P and Q can be taken strictly positive.

Proof of Theorem 6: (i)⇒ (ii): Suppose that K is a non-expansible polytope and
that KE is an expansible set. Since K has at least one strictly positive element,
KE has a probability on ∆(E)+. By the Lemma 3, there are PE, QE ∈ KE strictly
positive and a parameter ᾱ > 1 such that αPE+(1−α)QE ∈ ∆\KE for all α ∈ (1, ᾱ].
By the non trivial updating condition, there are P,Q ∈ K be two probabilities such
that PE, QE are its respective Bayesian updates and P (s) > 0, Q(s) > 0 for all
s ∈ EC . Now, we have two cases to be considered:

(i) Case 1. If P (E) = Q(E): It is immediate that αPE + (1−α)QE = (αP + (1−
α)Q)E. Therefore, (αP + (1−α)Q)(s) ≥ 0 for all α ∈ (1, ᾱ]. By the non trivial
updating condition, P (s) and Q(s) are positive for every s ∈ EC . Observe that
if P (s) = Q(s) for some s ∈ EC , then (αP + (1− α)Q)(s) ≥ 0. Otherwise, if
P (s) < Q(s) notice that

(αP + (1− α)Q)(s) ≥ 0 ⇐⇒ α ≤ Q(s)

Q(s)− P (s)
,

or, if P (s) > Q(s), then

(αP + (1− α)Q)(s) ≥ 0, ∀α > 0.

Thus, there is α̂ > 1 sufficiently small such that αP + (1−α)Q ∈ ∆. Since K is
non-expansible, we must have that αP+(1−α)Q ∈ K, so αPE+(1−α)QE ∈ KE.
Contradiction.
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(ii) Case 2. If P (E) 6= Q(E): From the Lemma 2, we know there is a parameter
β = β(α) > 1 such that (βP + (1 − β)Q)E = αPE + (1 − α)QE for each

α ∈ (1, ᾱ]. Let us assume without loss of generality that ᾱ ∈
(

1, P (E)
‖P (E)−Q(E)‖

)
.

Our objective is to ensure that βP + (1−β)Q is a positive probability for some
α̂ > 1 sufficiently small. We have to consider the following possibilities:

(a) If s ∈ E: We know that

βP (s)+(1−β)Q(s) = [βP (E) + (1− β)Q(E)]︸ ︷︷ ︸
≥0

·
[
α
P (s)

P (E)
+ (1− α)

Q(s)

Q(E)

]
︸ ︷︷ ︸

≥0

,

then βP (s) + (1− β)Q(s) ≥ 0.

(b) If s ∈ EC and P (s)
P (E)
− Q(s)

Q(E)
≥ 0, the above argument is sufficient to show

the non-negativity of βP (s) + (1− β)Q(s). Otherwise, it is possible to find
a small value α̂ such that

1 ≤ α̂ <
Q(s)P (E)

Q(s)P (E)− P (s)Q(E)
,

for all s ∈ EC in which P (s)
P (E)

< Q(s)
Q(E)

. In fact, it is possible assume this

constrain because we have that Q(s)P (E)
Q(s)P (E)−P (s)Q(E)

> 1 by assumption and

that Q(s) > 0 for all s ∈ EC by the non trivial updating condition. Then,
for any α ∈ (1, α̂) we have that

α
P (s)

P (E)
+ (1− α)

Q(s)

Q(E)
≥ 0.

Therefore, the existence of a positive probability βP + (1− β)Q with β > 1 is
incompatible with the hypothesis that K is non-expansible, we must have that KE is
also a non-expansible set.

(ii) ⇒ (i): Suppose that there is R ∈ KE such that there is no R̃ ∈ K where

R̃E = R and R̃(s) > 0 for all s ∈ EC . Let P ∈ K∩∆(S)+ and PE its Bayesian update.
By hypothesis, PE 6= R. Since KE is non-expansible and PE, R ∈ ∆(E)+, there is
ᾱ > 1 such that Q = ᾱR+(1− ᾱ)PE ∈ KE. In this case, R = 1

ᾱ
Q+(1− 1

ᾱ
)PE. Now,

since Q ∈ KE, there is Q̃ ∈ K such that Q̃E = Q. By the Lemma 1, since Q̃(E) > 0

there is β ∈ (0, 1) such that (βQ̃+ (1− β)P )E = R. However, βQ̃+ (1− β)P ∈ K
and (βQ̃+ (1− β)P )(s) > 0 for all s ∈ EC . A contradiction. �

Proof of Theorem 7: Suppose that a market with uniform bid-ask spreads is repre-
sented by the set of risk-neutral measures K such that

K = (1− ε)Q+ ε∆.
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Let P1, P2, ..., Pn the extremal points of K, that is, Pi = (1−ε)Q+εδi. Now, suppose
that an event E is observed. In this case, the conditional probabilities of Pi given E
are such that

PE
i (s) =

(1− ε)Q(s)

(1− ε)
∑
s′∈E

(1− ε)Q(s′)
= QE(s), ∀s ∈ E,

when i 6∈ E. And

PE
i (s) =

(1− ε)Q(s)

(1− ε)
∑
s′∈E

(1− ε)Q(s′) + ε
, ∀s ∈ E, s 6= i,

PE
i (i) =

(1− ε)Q(i) + ε

(1− ε)
∑
s′∈E

(1− ε)Q(s′) + ε
,

when i ∈ E. Now, observe that for all i ∈ E, PE
i = (1− γ)QE + γδi, where γ ∈ (0, 1]

is a parameter defined as

γ =
ε

(1− ε)
∑
s′∈E

Q(s′) + ε
.

Therefore, KE also represents a market with uniform bid-ask spreads, since KE =
(1− γ)QE + γ∆E. �

Proof of Theorem 8:
(ii)⇒ (i): Since ν is regular, for every nonempty E we have [acore(ν)]E = acore(νE).
Then,

CE(X) = max
P∈[acore(ν)]E

EP (X) = max
P∈acore(νE)

EP (X).

Following Chateauneuf and Jaffray (1995), we know that νE must be a concave
capacity. Using the the dual version of Theorem 3 in Schmeidler (1986), it is clear
that CE(X) =

∫
XdνE.

(iii) ⇒ (ii): It is known from Chateauneuf et al. (2011) that [acore(ν)]E ⊂
acore(νE). Suppose that [acore(ν)]E ( acore(νE) for some event E 6= S. Then,
there is a probability P0 ∈ acore(νE) \ [acore(ν)]E. From Jaffray (1992) we know
that [acore(ν)]E is a convex compact set. By the strong version of the Separating
Hyperplane Theorem (see Rockafellar (1997)), there is X ∈ RS such that EP0(X) >
EP (X) for every P ∈ [acore(ν)]E. In the other side, the hypothesis ensures that
CE(X) = max

P∈[acore(ν)]E
EP (X) = max

P∈acore(νE)
EP (X) for every X ∈ RS, a contradiction.
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Using the same argument, it is possible to show that [acore(ν)]E ) acore(νE) cannot
be true. Therefore, [acore(ν)]E = acore(νE).

(i)⇒ (iii): First, take E = S. Then C(X) = maxP∈K is a Choquet integral for
some capacity ν. Furthermore, C(A∗) = ν(A) for all A ⊂ S. Therefore, ν is unique.

Since C(·) is subadditive, we obtain that∫
(X + Y )dν ≤

∫
Xdν +

∫
Y dν,

for all X, Y ∈ RS. From the dual version of Theorem 3 in Schmeidler (1986), we
conclude that ν must be concave. Moreover, C(X) = max

P∈K
EP (X) = max

P∈acore(ν)
EP (X).

Then, using again the strong version of the Separating Hyperplane Theorem, we
have that K = acore(ν).

Suppose that CE(·) is a Choquet integral with respect to a concave capacity
µE. Since ν is concave, we know from Chateauneuf et al. (2011) that νE(A) =
sup{PE(A) | P ∈ acore(ν)},∀A ⊂ E can also be written as

νE(A) =
ν(A)

ν(A) + 1− ν(A ∪ EC)
,

and that νE is concave for every event E compatible with K. And by the unicity in
the representation, we must have µE = νE. This completes the proof. �
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